티스토리 뷰

공부공부

선형 칼만필터

필님님 2020. 5. 9. 21:36

예측값과 측정값을 바탕으로하여

추정값을 계산하는 필터

 

외부입력 : (측정값)

칼만필터를 통해 나오는 출력값 : (추정값)

 

시스템 모델 변수 : A,H,Q,R

칼만 필터 내부에 사용되는 변수:

상태정보 모델 : 시스템의 운동방정식을 상태변수에 대해 1차 미분방정식으로 표현한 모델

 


먼저 칼만필터를 이해하기 위해 조금 거슬러 올라가면

칼만필터는 저주파 통과 모델과 유사(재귀필터)

그리고 저주파 통과 필터는 기본적으로 이동평균 필터를 개선하여 구현됩니다.

 

먼저 k-n+1번째 데이터에서 k번째 데이터까지 총 n개 데이터의 이동평균을 재귀식으로 나타내면

 

이러한 식을 얻어낼 수 있습니다.

이 식의 단점은 평균을 얻고자 하는 데이터에 모든 동일한 가중치를 부여하여 계산했다는 점 입니다.

 

이것을 개선한 식이 저주파 통과 필터 식이며 다음과 같습니다.

알파 값은 0과 1사이의 수로 가중치를 조절하여 오래된 데이터일수록 가중치를 낮게 부여할수 있는것이 특징입니다.

 

이 식과 유사한 식이 바로 칼만필터의 추정값을 계산식에 들어가게되어 최종 원하는 결과물을 만들게 됩니다.

칼만필터가 저주파 통과 필터 식에서 개선된 점은 바로 알파 값(칼만필터에서 K)이 계속 바뀐다는 점 입니다.

 

 

 

위첨자의 의미는 예측값, 아래첨자(k)는 시간을 의미


 

예측과정 : 직전 추정값(xk) 과 오차 공분산(Pk)이 입력,

최종결과가 예측값(xk(슬래쉬), Pk(슬래쉬))

예측과정에서 사용되는 시스템 모델 변수는 A , Q , (B)

 

 


추정과정 : 예측과정에서 결과물인 예측값과 더불어 측정값(Zk) 가 입력, 측정값과 예측값의 차이를 보정하여 새로운 추정값을 계산함.

결과가 현재 추정값과 현재상태의 오차 공분값 (예측과정의 오차 공분산으로 들어가게 됩니다.)

추정과정에서 사용되는 시스템 모델 변수는 H, R

 

오차 공분산은 수학적으로 다음과 같은 의미를 가집니다.

 

 

보통은 시스템 모델이 실제 모델과 얼마나 비슷한지에 따라 필터성능이 크게 좌우 됩니다.

 

 

 

 

위의 과정을 반복적으로 시행하여 필터역할을 수행하게 됩니다.

'공부공부' 카테고리의 다른 글

라즈베리파이 스트리밍 서버 활용하기  (1) 2021.02.02
VLC 영상 스트리밍  (0) 2020.06.08
Visual Studio) netsdk1 에러 발생시  (0) 2020.05.06
Mission Planner Tuning  (0) 2020.03.23
RTK-GPS 측정방법과 정확도  (0) 2020.03.05
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함